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The effect of free-surface drift layers on the maximum height that a steady wave can
attain without breaking is explored through experiments and numerical simulations.
In the experiments, the waves are generated by towing a two-dimensional fully
submerged hydrofoil at constant depth, speed and angle of attack. The drift layer is
generated by towing a plastic sheet on the water surface ahead of the hydrofoil. It
is found that the presence of this drift layer (free-surface wake) dramatically reduces
the maximum non-breaking wave height and that this wave height correlates well
with the surface drift velocity. In the simulations, the inviscid two-dimensional fully
nonlinear Euler equations are solved numerically. Initially symmetric wave profiles are
superimposed on a parallel drift layer whose mean flow characteristics match those
in the experiments. It is found that for large enough initial wave amplitudes a bulge
forms at the crest on the forward face of the wave and the vorticity fluctuations just
under the surface in this region grow dramatically in time. This behaviour is taken as
a criterion to indicate impending wave breaking. The maximum non-breaking wave
elevations obtained in this way are in good agreement with the experimental findings.

1. Introduction
The steady free-surface flow field generated by a ship moving at constant speed in

calm water typically includes breaking waves at the bow and the stern. The bow wave
and the parts of the stern wave far from the ship track propagate in undisturbed water
while the parts of the stern wave near the ship track propagate in a flow with a free-
surface shear layer due to the boundary layer of the hull and/or the surface wakes of
upstream breaking waves (surface wakes of steady breaking waves have been studied
by Battjes & Sakai 1981 and Duncan 1981, 1983). A comprehensive theoretical or
numerical model of wave breaking in the presence of surface wakes must include
information on incipient wave breaking conditions. An incipient breaking wave is
defined as a non-breaking wave for which even a slight increase in its steepness would
cause breaking. The fact that upstream surface wakes affect the incipient breaking
conditions of downstream waves is demonstrated by observations that the breaking
stern wave crest frequently extends out past the side of the ship to a width equal to
the width of the breaking bow wave, even when the stern wave steepness appears to
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be very low in terms of calm water incipient breaking conditions. These effects are
illustrated in the photograph shown on the cover of Parker (1994).

The incipient breaking condition for steady waves in calm water was explored
theoretically by Stokes (1847). In this work, it was assumed that at incipient breaking
the fluid velocity at the crest of the wave approached the phase speed of the wave.
Thus, using Bernoulli’s equation for a streamline on the free-surface and assuming
constant pressure on this streamline, the incipient breaking amplitude of a steady
wave is given by

ζmax =
U2∞
2g
, (1.1)

where ζmax is the height of the crest above the mean water level, U∞ is the wave phase
speed, and g is the acceleration due to gravity. Stokes also found, using irrotational
flow theory, that the incipient breaking wave would have a sharp crest with an
included angle of 120◦. Subsequent studies have shown that it is nearly impossible to
obtain the above wave form either in nature or in the laboratory owing to instabilities
which set in at smaller wave amplitudes.

The effect of a uniform vorticity distribution on the shape of the crests of limiting
wave forms was investigated with a two-dimensional inviscid theory by Miche (1944).
It was found that the crest is symmetric and sharp with an included angle of 120◦ as
in the case without vorticity. However, when the surface drift is in the same direction
as the wave propagation, the front and rear wave faces at the crest have a finite
upward curvature which is not present in the irrotational case.

The effect of a thin surface wind drift layer upon the incipient breaking condition
was investigated by Banner & Phillips (1974). A steady theory was used in which, in
the same manner as Stokes, incipient breaking was assumed to occur when the fluid
velocity at the crest equalled the wave phase speed. However, in the presence of a
wind drift layer with the surface drift velocity (relative to the fluid at infinite depth) in
the same direction as the wave phase speed, the incipient breaking condition occurs
at smaller wave amplitudes than predicted by Stokes:

ζmax =
U2∞
2g

(1− q)2, (1.2)

where q = (U∞ − U(0))/U∞, where U(0) is the fluid velocity at the water surface in
the reference frame of the wave crest but with no wave present. This effect on the
limiting wave amplitude was also mentioned qualitatively by Miche (1944) for the
case of uniform vorticity. In (1.2), the result of Stokes is reproduced when q = 0. For
the case of ship waves, the wind drift layer would be replaced by the wake from an
upstream breaker or the ship hull.

Computations of waves propagating in the presence of free-surface shear layers
have been reported by Simmen & Saffman (1985) and Teles Da Silva & Peregrine
(1988). In Simmen & Saffman (1985), waves on a fluid with constant vorticity and
infinite depth were considered, while in Teles Da Silva & Peregrine (1988) waves on a
layer of fluid with constant vorticity and finite depth were considered. In both cases,
wave profiles, extreme wave heights and wave propagation speeds were presented.

Experimental studies of the incipient breaking conditions for steady two-dimensional
waves generated in calm water have been reported by Salvesen & von Kerczek (1976,
see also Salvesen 1981) and Duncan (1983). In both studies, the waves were generated
with a submerged hydrofoil moving at constant speed, depth, and angle of attack in
a towing tank. In Salvesen & von Kerczek (1976), the incipient breaking condition
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was determined by fixing the depth and angle of attack of the foil and varying the
foil speed from one experimental run to another. At low speeds, the wave steepness
was small and no breaking occurred. As the speed was increased, the wave became
steeper and, for a high enough speed, the wave broke. If the foil speed was increased
past this point, the breaking eventually stopped. Thus, speeds just less than the speed
for which breaking started and just high enough for breaking to stop were chosen
and the wave slope was measured at each of these incipient breaking conditions. This
procedure was repeated for several depths of submergence. The maximum surface
slope of these incipient breaking waves varied from 11◦ to 25◦ and did not show
any consistent trend. Duncan (1983) found that for fairly steep non-breaking waves,
breaking could be triggered by dragging a cloth for 1 or 2 s on the water surface
ahead of the wave. For small enough wave steepnesses, when the cloth was removed,
the wave would stop breaking. However, for higher wave steepnesses the wave would
continue to break after the cloth was removed. The wave profiles measured at the
incipient breaking condition determined by whether or not the wave would continue
breaking when the cloth was removed were very consistent. The maximum slope
of each profile was found to be about 16◦; this value increased slowly with towing
speed. Even though the cloth was used momentarily to trigger breaking, the above
defined incipient breaking condition is for a wave in calm water. These simple ex-
periments also indicated that for steepnesses a little greater than the above defined
incipient breaking steepness, the flow could exist in either a breaking or non-breaking
state.

In the present paper, the effect of a steady surface wake on the incipient breaking
condition of a steady wave is examined experimentally and numerically. In the
experiments, a plastic sheet is dragged along the water surface at a fixed distance
ahead of the steady wave created by a towed hydrofoil. Unlike the experiments of
Duncan (1983) where the cloth was only dragged on the water surface for a short time
to get breaking started and then removed so that the wave continued to propagate in
calm water, in the present experiments the plastic sheet was always present in front
of the wave. With the hydrofoil at a fixed depth of submergence (one for which it
produces a non-breaking wave in calm water), the distance, ∆x, between the trailing
edge of the plastic sheet and the hydrofoil was varied to obtain the incipient breaking
condition. For small ∆x, the local surface drift near the wave crest, q, is high and
the wave tends to break even when its amplitude is small. For large ∆x, q is small
and the wave does not break, as if it were propagating in calm water. The incipient
breaking wave was taken as the non-breaking wave for which breaking will start if ∆x
is decreased by a small amount. Wave profile measurements are taken at the incipient
breaking conditions and the wakes of the plastic sheets are characterized through
measurements of the mean horizontal velocity distributions taken at three streamwise
locations for each of two plastic sheets. These measurements are used to quantify the
effect of q and the wake momentum thickness on the incipient breaking conditions.
Numerical simulations of a similar flow are performed using a fully nonlinear inviscid
two-dimensional free-surface flow code. The incipient breaking conditions found in
the experiments are compared to the theory of Banner & Phillips (1974) and to the
results of the numerical simulations. The experimental data and the numerical results
are further used to explore the physics of the instability processes at the incipient
breaking condition.

The remainder of this paper is divided into five sections. In § 2, the details of the
experimental setup and measurement techniques are presented. This is followed in § 3
by a description of the experimental results. In § 4, the numerical model is presented
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Figure 1. Side view of the towing tank.

along with some typical results. The experimental and numerical results are compared
and discussed in § 5. Finally, the conclusions are presented in § 6.

2. Experimental techniques
2.1. The towing tank

The experiment was performed in a towing tank with dimensions of 14.8 m long,
1.22 m wide and 1.0 m deep, see figure 1. The sidewalls of the tank are made of
glass to allow flow visualization and optical measurements. The tank contains both
below-surface and above-surface towing systems. The below-surface towing system
includes two fully submerged ‘L’-shaped tracks that are mounted near each of the
sidewalls. Objects are towed along the tracks by two stainless steel wire ropes which
enter the water at one end of the tank and leave from the other end. Thus, no part
of the towing system breaks the water surface in the vicinity of the towed object. The
wire ropes are driven by a servo motor mounted at one end of the tank, see figure 1.
The above-surface towing system uses two tracks mounted above the tank, one near
each sidewall. These tracks consist of a 3.8 cm diameter stainless steel precision rod
on one side and a 5.1× 5.1 cm precision-ground steel I-beam on the other, see figure
2. An instrument carriage rides on the tracks via four hydrostatic oil bearings. When
high-pressure oil is supplied to the bearings, a thin film of oil is forced between the
bearings and the tracks, thereby greatly reducing vibration and friction levels of the
carriage. The carriage is driven by two separate wire ropes which are powered by
the same servo motor that powers the below-surface towing system. Precise towing
speeds are obtained by means of a computer-based feedback control system. The
towing speed is verified with an independent measurement obtained from two timing
switches located 209.87 cm apart and connected to a timer with nanosecond accuracy.

In the present experiments, steady waves were generated with a hydrofoil mounted
on the below-surface towing system. The hydrofoil is an aluminium NACA 0012
airfoil with a 20 cm chord which is operated at a 9◦ angle of attack. This foil spans
the width of the tank with a small clearance of 1.4 cm between the edges of the foil
and the walls of the tank. The foil is mounted on two stainless steel plates which, in
turn, are mounted on two Delrin blocks, each with a groove cut into it, see figure
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Figure 2. End view of the towing tank.

Short Long

Length (cm) 63.5 101.6
Width (cm) 101.6 114.3
Contact length (cm) 56 94

Table 1. Physical dimensions of the short and long Mylar sheets.

2. These grooves provide a low-friction bearing surface to slide along the submerged
L-shaped tracks. The surface wake was created with sheets of Mylar dragged along
the surface of the water at a fixed distance ahead of the hydrofoil. The Mylar sheets
have a thickness of 0.13 mm and a specific gravity of 1.25. Although these sheets are
heavier than water, the contact angle at the Mylar–air–water interface around the
edges of the sheets allowed them to remain on the water surface. Two Mylar sheets
were utilized, each having the physical dimensions as shown in table 1. As can be
seen from the table, the sheet widths are not equal and do not completely span the
width of the wave tank; however, since both widths are greater than two lengths of
the gravity wave (about 40 cm) the variation of the sheet width has no noticeable
effect on the results.

The mounting assembly used to hold the Mylar sheets in place was attached to the
instrument carriage via two linear motion slides to allow for vertical positioning of
the entire assembly, see figure 3. Attached to these slides was a long flat bar and a
long 90◦ angle, both spanning the width of the tank. The Mylar sheet was inserted
between the bar and the angle, then the two were clamped together holding the sheet
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Instrument carriage

Angle

Bar
Hydrofoil

Separation distance

Linear motion slide

Mylar sheet

Towing direction
Needle
pointer

14
 m

m48
°

Figure 3. Side view of mounting assembly for Mylar sheets.

in place. To create a two-dimensional wake, the contact area between the sheet and
the water surface must be rectangular. The driving factor needed to maintain this
rectangular form is a straight waterfront at the leading edge of the contact area. The
angle and height of the bar relative to the water surface were adjusted to maintain
this straight, repeatable waterfront. By trial and error, the angle of the bar to the
water surface was chosen to be 48◦. One needle pointer is mounted on each end
of the bar perpendicular to the water surface. These pointers are used to maintain
a repeatable distance between the mounting assembly and the water surface. The
relative position between the above-surface carriage and hydrofoil is adjustable. This
allows the separation distance between the trailing edge of the Mylar sheet and the
leading edge of the hydrofoil to be varied. Towed by itself, the sheet created a wake
at the water surface and as discussed below, a train of small-amplitude waves.

In order to control water clarity and surfactants, a recirculating skimmer system
was used. This system includes two surface skimmers located at one end of the tank.
The water from the skimmers was sent to a diatomaceous-earth filter and then sent
back to the tank through a port at the opposite end of the tank from the skimmers.
When fresh water was needed, tap water was sent through a separate filter before
entering the tank. The skimming system was run for at least 2 hours and then turned
off about 20 min before any of the measurements were taken.

2.2. Mean velocity measurements

A rake of three Pitot tubes was used for the mean velocity measurements in the
wakes of the Mylar sheets. The rake had a spanwise horizontal spacing between tubes
of 10 cm and a vertical spacing of 10 mm. The large horizontal spacing was chosen
to minimize the interaction between the individual tubes. The rake was mounted
on a telescoping arm which was attached to the instrument carriage, allowing the
streamwise distance from the trailing edge of the Mylar sheet to the tips of the tubes
to be varied. The Pitot tube rake was attached to the arm via a linear traverser
to allow vertical positioning. Each Pitot tube was connected through transparent
Tygon tubing to a separate differential diaphragm-type pressure transducer (Validyne
Model P305D), each having a range of ±0.2 p.s.i. The three pressure transducers
were mounted on the end of the telescoping arm at equal heights above the water
surface. The analog voltage output of each pressure transducer was connected to a
12-bit analog-to-digital (A/D) converter operating at 1200 samples per second and
the digitized output was stored in the memory of a PC. The signal taken during
the steady-state part of each run was then averaged. Division of the full pressure
range of the transducer by the resolution of the A/D converter yields an accuracy of
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0.1 cm s−1 at an average speed equal to the towing speed, 80.5 cm s−1. However, during
runs made with the Pitot tubes moving through the undisturbed water in the towing
tank, a pressure fluctuation corresponding to a root-mean-square velocity fluctuation
of 0.2 cm s−1 was observed.

The above-described equipment was used to measure the vertical distribution of
mean horizontal velocity at three streamwise locations behind each Mylar sheet. These
measurements were performed without the presence of the hydrofoil. In performing
these experiments, it was observed that, like the hydrofoil, the Mylar sheets generated
a train of two-dimensional surface waves whose phase speed was equal to the
towing speed. Though the amplitudes of these waves were small (at most 0.17 cm),
they were found to have a noticeable effect on the mean velocity distributions (see
below). In order to use the Pitot tubes in locations where the fluid velocity was
known to be horizontal, the velocity distributions were measured at the streamwise
locations of the troughs of the following wavetrain. For a towing speed of 80.4 cm s−1,
visual examination of the wavetrains showed the wavelengths to be about 40 cm; by
linear theory with no surface wake the length of this wave would be 41.4 cm. The
measurement locations were taken as 38, 80 and 120 cm behind the trailing edge of
the short Mylar sheet and 40, 80 and 120 cm behind the trailing edge of the long
Mylar sheet.

A mean velocity distribution at one streamwise location was typically measured
during the period of 1 day. The first step in the measurement process was to remove air
bubbles from the Pitot tubes, tubing and transducers. The next step was to calibrate
by running the Pitot tubes at predetermined velocities through the undisturbed water
in the towing tank. From each record, the data recorded after a steady state was
reached (after about 4 s in each run) were averaged and used to create a calibration
curve for the wake flow measurements. Upon completion of the calibration runs, the
Mylar sheet was clamped onto the mounting assembly as illustrated in figure 3 and
the Pitot tubes were set at one of the three distances from the trailing edge of the
Mylar sheets. During each experimental run the depth of the rake was held fixed.
This depth was varied in a random manner from run to run until measurements at
enough depths were taken to ensure a well resolved profile of the mean velocity; runs
at most measurement depths were repeated three times. After running for a period
of about 3 hours, the calibration process described above was repeated. The output
files from the A/D converter were processed through a computer program to convert
the digital points into velocities using the average of the calibrations before and after
the data-taking runs. It should be noted that the finite size of the Pitot tubes resulted
in an inability to make fluid velocity measurements closer than about 5 mm from the
water surface.

A sample of a raw mean velocity distribution is shown in figure 4(a). In this figure,
a depth of zero is the local free-surface elevation. As can be seen in the plot, the mean
velocity increases slowly as the depth decreases from 10 cm to about 2 cm. Thereafter,
the velocity decreases rapidly to about 65 cm s−1 near the free-surface. The increase
in velocity between 10 cm and 2 cm in depth is an effect due to the small-amplitude
wavetrain generated by the Mylar sheet. The horizontal velocity distribution in a
potential flow wave at its trough can be described by linear wave theory (see for
example Lamb 1932):

Uw = U∞(1 + akekz
′
), (2.1)

where U∞ is the carriage velocity, a is the wave amplitude, k is the wavenumber given
by k = g/U2∞ in linear theory, and z′ is the vertical coordinate (positive up) relative to



292 M. Miller, T. Nennstiel, J. H. Duncan, A. A. Dimas and S. Pröstler
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Figure 4. Mean horizontal velocity versus depth below the mean free water surface at a distance
of 38 cm behind the trailing edge of the short Mylar sheet (no hydrofoil): (a) Raw velocity data;
(b) velocity data after subtracting Uw(z). The solid line is a least squares fit of 2.2.

the mean water surface. The free-surface is at z′ = −a. The above equation was fitted
to the data by determining the wave amplitude that minimized the mean-squared
error over the range −2 > z′ > −10 cm. The resulting velocity perturbation profile,
Uw − U∞, was then subtracted from all the data (0 > z′ > −10 cm). Several of the
velocity distributions were also displaced by an amountUos, whereUos ≈ −0.2 cm s−1

at most, to account for the fact that the distributions after subtracting Uw did not
asymptote to the known towing speed, U∞, see § 3. The reason for this discrepancy
between the asymptote and U∞ is not known. The final distribution after the above
processing and displacing the profile upward by the wave amplitude, a, was called the
wake velocity distribution and given the symbol U(z):

U(z) = u(z′)− (Uw(z′)−U∞)−Uos,

where u(z′) is the measured data and z = z′ + a. The wake velocity profile (U(z))
corresponding to the raw data in figure 4(a) is given in figure 4(b).

In order to obtain the surface velocity from the data and to have a mathematical
form for the wake velocity profile, an equation given by

U(z) = U∞
[
1− q1− tanh (a1z

2 + a2)

1− tanh (a2)

]
, q =

U∞ −U(0)

U∞
(2.2)

was fitted to the final data U(z), where a1 and a2 are fitting parameters. The best
set of constants (U(0), a1 and a2) for the given velocity data set were determined
by minimizing the sum of the squared deviations. (A tanh (a1z

2) profile was used by
Mattingly & Criminale (1972) to fit the velocity profiles in the near wake of a
hydrofoil and a tanh (a1z

2 + a2) profile was used by Triantafyllou, Triantafyllou &
Chryssostomidis (1986) in the near wake of a cylinder. In the present work, it was
found that the latter function gives a smaller average of the squared deviations when
fitted to the data.) A curve with the form of (2.2) using the computed constant set
has been overlaid on the data in figure 4(b). The above data processing was repeated
for the three measurement distances for both Mylar sheets giving six velocity profiles
(see § 3).
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2.3. Wave-height measurements

To measure the height of the incipient breaking waves created by the combination
of the hydrofoil and the Mylar sheet, it was not possible to use wire gauges fixed to
the tank because, in the towing tank, the Mylar sheet would collide with the gauge
during the run. Thus, an optical wave-height gauge was used (Lin & Liu 1982). In
this device, the beam of a 5W Argon-ion laser (Spectra Physics, model 2017) was
pointed vertically down on the water surface at a fixed location in the wave tank. A
pair of cylindrical lenses was used to convert the laser beam into a light sheet that
was 1mm thick and 8 cm long as it entered the water with the normal to the light
sheet directed in the cross-stream direction. The water in the tank was mixed with
Fluorescene dye at a concentration of about 1.5 p.p.m so that the water illuminated
by the laser glowed with a greenish yellow colour. The intersection of the laser beam
and the water surface was observed via a digital linescan camera (Dalsa Linescan
Digital Camera Model CL-C4 2048A STDJ with a Nikon 200 mm lens). The camera
was attached to a vertically oriented linear slide mounted onto a tripod that was fixed
to the floor outside the tank. The camera viewed the wave from the side of the tank
and above the waterline at approximately a 25◦ down angle; the plane defined by the
line of sight of the camera and the single line of 2048 CCD elements (pixels) was
oriented normal to the water surface and perpendicular to the centreplane of the tank.
At the plane of the light sheet the array of 2048 pixels covered a physical vertical
distance of about 16 cm (0.08 mm per pixel). The CCD elements received little light
from the air above the water surface but much more light from the glowing dye at
the intersection of the laser light sheet and the water surface. The boundary between
the poorly and brightly illuminated CCD elements was taken as the water surface.
The camera was set up to record a single line of 2048 eight-bit pixels every 0.004 s. A
total of 1.2 s of data was recorded during each experimental run creating an image
(vertical distance versus time) of 2048 by 300 pixels. In each image, the water surface
was located by an intensity-based thresholding technique. Before any images were
taken, a calibration set was created by recording the position of the flat water surface
with the camera set at five different heights above the water surface. These heights
were known and repeatable through the linear positioner upon which the camera
was mounted and gave the relationship between pixel position of the surface image
and measured height. Before each set of experimental runs in measuring the waves,
a single height image was taken with no wave present to determine the mean water
level. In this run and in the calibration runs, it was found that the root-mean-square
surface height fluctuation due to mechanical, electronic and data processing noise was
about ±0.006 cm.

At each experimental condition, the profile of the incipient breaking wave was
measured in three independent experimental runs. A sample of the three wave profiles
for a single experimental condition and the average of the three profiles is given in
figure 5. The incipient breaking wave height, ζmax, was taken from the average profile
as the vertical distance from the undisturbed water level to the wave crest.

3. Experimental results
In this section, the incipient breaking conditions in terms of the external parameters

of the experiment (foil depths and separations distances between the foil and the Mylar
sheets) and the wake characteristics as a function of distance behind the trailing
edge of the sheet are presented. These results along with the incipient breaking wave
amplitudes are discussed in the light of the numerical results and existing theory in § 5.
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Figure 5. Wave-height profiles. (a) Profiles for three experimental runs with the same experimental
condition, (b) average of wave-height profiles in (a). Short Mylar sheet, ∆xi = 40 cm, d = 26.4 cm.

3.1. Incipient breaking conditions

Incipient breaking conditions were determined visually through the following pro-
cedure. First the depth of submergence of the foil was fixed at a value for which,
with no Mylar sheet, the wave did not break. Then the Mylar sheet was put in place
and the horizontal separation distance, ∆x, between the trailing edge of the Mylar
sheet and the leading edge of the hydrofoil was set at a value small enough to cause
wave breaking. Over a series of experimental runs, ∆x was increased. For large ∆x
the wake of the sheet at the location of the wave crest is very thick and has a very
small surface drift. In this case, the wave behaves much like a wave in calm water, i.e.
it does not break. Subsequent runs were used to locate the incipient breaking value
of ∆x, denoted as ∆xi, which is defined such that for all ∆x < ∆xi the wave breaks.
All experiments were performed with the same towing speed, U∞ = 80.4 cm s−1. For
each Mylar sheet, the value of ∆xi was determined for six depths of submergence. A
plot of ∆xi/c, where c is the chord of the foil, versus d/c, where d is the depth from
the undisturbed free-surface to the trailing edge of the foil, is given in figure 6. A
separate curve for each Mylar sheet is given in the plot.

3.2. Wake characteristics

The wake characteristics (for instance the wake thickness and surface drift velocity) at
the location of the incipient breaking wave crest must be determined from the wake
velocity distributions which were measured at only three locations in each wake. Thus,
characteristics of the mean velocity profiles must be determined by interpolation at
places other than the three measurement locations. The mean velocity distributions
in the wake at each measuring location as determined by fitting (2.2) to the processed
mean velocity measurements as described in § 2.2 are given in figure 7(a) for the short
Mylar sheet and 7(b) for the long Mylar sheet. Wake characteristics taken from these
profiles are given in table 2. As can be seen from the plots or the table, the surface
drift velocity,

q =
U∞ −U(0)

U∞
, (3.1)

decreases and the wake half-thickness, b1/2, where

U∞ −U(z = −b1/2)

U∞
= 0.5, (3.2)
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Figure 7. Velocity profiles from the fit of Equation 2.2 to the mean velocity measurements:
(a) short Mylar sheet, (b) long Mylar sheet. Shortest streamwise distance ———; middle streamwise
distance · · · · · ·; largest streamwise distance – – – – – –.

increases as the distance downstream is increased for both wakes. On the other hand,
the momentum thickness,

θ =

∫ 0

−∞
U

U∞

(
1− U

U∞

)
dz, (3.3)

is (as expected) nearly the same for all three locations in each wake. In the later
analysis, the average values of θ for each Mylar sheet, θ = 0.145 cm for the short
sheet and θ = 0.210 cm for the long sheet, are used.

For a self-similar wake

q = C1

(x− x1

θ

)−1/2

. (3.4)

Using a nonlinear least-squares method, the above equation was fitted to the six data
points shown in table 2. The resulting constants were C1 = 3.07 and x1 = −47.98 cm
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Mylar sheet: Short Long

x (cm) 38 80 120 40 80 120
q 0.184 0.130 0.101 0.193 0.149 0.117
b1/2(cm) 0.91 1.22 1.48 1.23 1.58 1.90
θ(cm) 0.150 0.143 0.142 0.210 0.214 0.207
Rel 4.48× 105 7.53× 105

Table 2. Wake characteristics for the short and long Mylar sheets. (x is the streamwise distance
from the trailing edge of the sheet to the measurement location. Rel = (U∞l)/ν is the Reynolds
number, where l is the contact length of the sheet and ν is the kinematic viscosity of water.)

0.3

0.2

0.1

0 200 400 600 800 1000

x/h

q

Figure 8. Surface drift velocity, q, versus measurement distance, x/θ: •, short Mylar sheet;◦, long Mylar sheet.

and this curve is plotted along with the data in figure 8. The variation of wake
thickness can also be described by a similarity power law defined by

b1/2

θ
= C2

(x− x2

θ

)1/2

. (3.5)

The constants resulting from a nonlinear least-squares fit to the data were C2 = 0.34
and x2 = −74.78 cm and the data along with the curve are shown in figure 9.

4. Numerical simulations
The nonlinear interaction between the surface wake generated by the Mylar sheet

and the gravity wave generated by the submerged hydrofoil is also studied numerically
considering the following model of the process: (a) initially, the sheet wake is modelled
as a two-dimensional parallel shear flow and the hydrofoil wave is modelled as a
plane gravity wave, and (b) the time evolution of their interaction is followed by a
direct numerical simulation of the Euler equations.

The velocity profile of the parallel shear flow is identical to the mean velocity profile
measured in the wake of the Mylar sheet at a streamwise distance corresponding to
the location where the free-surface crosses the mean water level just upstream of the
wave crest. As discussed above, the velocity profile of the shear flow is given by (2.2).
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Figure 9. Wake thickness, b1/2/θ, versus measurement distance, x/θ: •, short Mylar sheet;◦, long Mylar sheet.

The plane gravity wave which is added to the shear flow for the initial condition
of the numerical model is a second-order periodic Stokes wave with the appropriate
wavelength, λ, according to linear theory

λ = 2π
U2∞
g
. (4.1)

The Froude number Fr of the flow, defined as

Fr =
U∞

(gb1/2)1/2
, (4.2)

is related to the dimensionless wavenumber k of a periodic gravity wave according to

k = 2π
b1/2

λ
=
gb1/2

U2∞
=

1

Fr2
, (4.3)

where the characteristic length scale b1/2 is the half-width of the velocity profile.
In the following presentation of the equations of motion of the fluid, lengths

are non-dimensionalized by b1/2 and velocities by U∞. For a two-dimensional in-
compressible inviscid free-surface flow, the equations of motion are the continuity
equation

∂u

∂x
+
∂w

∂z
= 0 (4.4)

and the Euler equations

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
, (4.5)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
, (4.6)

where t is time, x, z are the Cartesian coordinates (x is the horizontal coordinate, z
is positive in the opposite direction to gravity, and z = 0 corresponds to the mean
free-surface level), u, w are the velocity components, and p is the dynamic pressure,
defined as the pressure P minus the hydrostatic pressure

(
p = P − (−z/Fr2

))
. At
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the free-surface, the dynamic and kinematic free-surface boundary conditions are,
respectively,

p =
η

Fr2
and w =

dη

dt
=
∂η

∂t
+ u

∂η

∂x
at z = η, (4.7)

where η is the free-surface elevation and d/dt is the total (material) derivative
operator.

The free-surface elevation is an unknown function of time, which renders the flow
domain time-dependent. Boundary-fitted coordinates are introduced according to the
following transformations:

x1 = x, x2 = z − η(x, t), u1 = u, u2 = w − dη

dt
= w − ∂η

∂t
− u∂η

∂x
, (4.8)

where xi are the coordinates and ui are the velocity components in the transformed
domain.

According to the above transformation, the continuity and the Euler equations,
respectively, become (Dimas & Triantafyllou 1994)

∂ui

∂xi
= 0, (4.9)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+Hi, (4.10)

where

H1 =
∂p

∂x2

∂η

∂x1

and H2 =
d2η

dt2
, (4.11)

while the dynamic and kinematic free-surface boundary conditions, respectively, be-
come

p =
η

Fr2
and u2 = 0 at x2 = 0. (4.12)

For the direct numerical simulation of the Euler equations, an operator-splitting
scheme is employed for the temporal integration and spectral methods for the spatial
discretization with Fourier modes along the x1-direction, and Chebyshev polynomials
along the x2-direction (Dimas 1998). Specifically, 64 Fourier modes were used in the
x1-direction, and 64 Chebyshev modes in the x2-direction, while the time step was
0.00025. Periodicity boundary conditions are applied in the x1-direction, while the
length of the computational domain in the x1-direction is equal to the wavelength of
the gravity wave. Throughout the computation, fast-Fourier-transform algorithms are
used to transform between physical and spectral space, and a spectral preconditioning
technique is used on the pressure step of the splitting scheme, which renders the matrix
of the resulting system of linear equations banded, thus dramatically reducing the
computation time for its solution.

At time t = 0, the computation starts with the mean velocity profile and the flow
field of the plane gravity wave, while the initial free-surface elevation corresponds to
the second-order Stokes wave with an initial wave amplitude η0, as measured from
z = 0 to the wave crest.

For this paper, three velocity profiles are considered:
(a) θ = 1.4 mm, q = 0.3, b1/2 ≈ 5 mm, Fr = 3.60;
(b) θ = 1.4 mm, q = 0.2, b1/2 ≈ 7 mm, Fr = 3.06;
(c) θ = 1.4 mm, q = 0.1, b1/2 ≈ 13 mm, Fr = 2.25.

For each velocity profile, the wavelength is evaluated according to (4.3), while several
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Figure 10. Time development of the free-surface elevation, η, for four different initial wave
amplitudes, Z0, and q = 0.3. In each case, the free-surface shape is plotted every dt = 5 time units,
while for every new curve, the mean water level is shifted upwards by dη = 0.5 from that of the
previous curve.

dimensionless wave amplitudes η0 are considered. Results for q = 0.3 are presented
for Z0 = 0.32, 0.37, 0.39 and 0.44, where Z0 is defined as

Z0 =
2gζ0

U2∞
=

2η0

Fr2
, (4.13)

where η0 = ζ0/b1/2. For the Stokes limiting wave, Z0 = 1.0 (see (1.1)). The time
development of the free-surface elevation for all four cases is shown in a frame of
reference moving with the wave phase speed in figure 10. In all cases, after about
t = 20, the free-surface elevation becomes asymmetric about the wave crest, although
the initial condition is symmetric. The level of asymmetry increases as Z0 is increased.
For the highest value, Z0 = 0.44, the free-surface elevation develops a bulge shape
on the forward face. This shape is similar to that found in gentle short-wavelength
spilling breakers (see Duncan et al. 1994, Longuet-Higgins 1996, and Tulin 1996).
The point of maximum upward curvature at the leading edge of the bulge is called
the toe. To observe the formation of this bulge in the present experiments, it would
have been necessary to photograph the transition of the wave from a non-breaking
to a breaking state as the hydrofoil started from rest. These measurements were not
attempted. For the case with Z0 = 0.44, vorticity contour plots of the flow at four
time instants around the time of the bulge formation are shown in figure 11. Note
that the vorticity field has a smooth spatial distribution up to the moment of bulge
formation at about t = 80 which results in an instability of the vorticity field. The
instability is localized in the area of the toe at x ≈ −12 and is associated with the
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Figure 11. Vorticity contour plots of the flow at four time instants around the time of the bulge
formation for Z0 = 0.44 and q = 0.3. Solid contours correspond to negative vorticity, broken
contours correspond to positive vorticity, and the increment between contours is 0.02.

sharp variation of the free-surface slope. A computation with 128 Fourier modes (256
grid points) in the x1-direction exhibits the same instability, since this sharp shape of
the free-surface at the toe of the bulge cannot be resolved with any finite number of
modes. On the other hand for the case Z0 = 0.32, there is no bulge formation during
the free-surface development and the vorticity distribution remains smooth as seen in
figure 12. As discussed in the following section, these differences in the vorticity field
are used to define incipient breaking conditions in the numerical results.
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Figure 12. Vorticity contour plots of the flow at four time instants for Z0 = 0.32 and q = 0.3. Solid
contours correspond to negative vorticity, broken contours correspond to positive vorticity, and the
increment between contours is 0.02.

5. Discussion
To examine the effect of the surface wake on the experimentally determined incipient

breaking conditions, the dimensionless incipient wave amplitude, Zmax = 2gζmax/U
2∞,

is plotted versus the dimensionless drift velocity, q, in figure 13. The values of ζmax were
taken from the profile measurements at the 12 incipient breaking conditions plotted in
figure 6. The corresponding values of q were taken from (3.4) with the measured value
of θ for each wake and the streamwise location behind the sheet taken at the point
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Figure 13. Non-dimensional wave amplitude versus local drift velocity at incipient breaking con-
ditions: •, short Mylar sheet; ◦, long Mylar sheet; �, data from Duncan (1983); ——, theory of
Banner & Phillips (1974); . . . . . . , modified theory (see (5.1)). The bars are from the present numerical
calculations: top horizontal line is definitely unstable, bottom horizontal line is definitely stable.

where the water surface profile crossed the mean water level just upstream of the wave
crest. (Varying this distance back to the crest location did not change the results signifi-
cantly.) The values
of q thus obtained are directly comparable to the definition of the surface drift in
Banner & Phillips (1974). As can be seen from the figure, the experimental data for
both the long and short Mylar sheets follow a single curve. This indicates that the
variations in wake momentum thickness (for θ = 0.145 cm and 0.210 cm or θ/λ =
0.0035 and 0.0051, respectively) have little effect on the incipient breaking amplitude
for the single towing speed used here, 80.4 cm s−1. The data point plotted at q = 0 is
from Duncan (1983) for a steady wave moving in calm water. Waves with amplitudes
a little higher than this value will form a steady breaker if disturbed from equilibrium
for a short time (see § 1).

Also plotted in figure 13 is a curve showing the theoretical result due to Banner
& Phillips (1974). The shape of this curve is similar to that of the experimental data,
but the magnitude is considerably higher. With this in mind, the theory of Banner &
Phillips (1974) is modified herein such that the incipient breaking condition is defined
as the wave amplitude for which the fluid velocity at the crest is αU∞, where the
factor α is to be determined from the experimental data. The resulting modified form
of (1.2) is

Zmax = (1− q)2 − α2. (5.1)

From a least-squares fit to the experimental data (including the point from Duncan
1983), α was found to equal 0.50 and the resulting curve is plotted as a dotted line
in figure 13. This modified theory overestimates the wave height at q = 0 but is
otherwise a fairly good fit to the data. If this theory is assumed to be accurate, it
would indicate that incipient breaking occurs in the presence of a surface wake when
the fluid particle speed at the crest reaches 50% of the wave phase speed.

Our numerical simulations indicate that the time evolution of the fluid velocity
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Figure 14. Time development of (a) the free-surface fluid velocity magnitude and (b) the crest
velocity magnitude for Z0 = 0.64 and q = 0.1. In (a), each curve is plotted every dt = 5 time units
and it is shifted upwards by dv = 0.1 from the previous curve.

at the crest reaches a minimum value during the bulge formation. As an example,
for q = 0.1 and Z0 = 0.64, the time development of the fluid velocity magnitude,
v = (u2 + w2)1/2, along the free-surface is shown in figure 14. As can be seen from
the figure, the fluid velocity magnitude at the crest reaches a minimum at about
t = 45 during the bulge formation. This minimum value of the crest fluid velocity is a
function of the drift velocity, q, and the dimensionless parameter Z0. For values of Z0

along the dotted line of figure 13 the minimum crest velocity is not equal to 0.5U∞ as
predicted by the modified theory of Banner & Phillips (1974). In fact, the minimum
crest velocity varies from about 0.3U∞ for q = 0.1 to about 0.5U∞ for q = 0.3. This
difference between our numerical model and the theory of Banner & Phillips (1974)
arises from the fact that our model includes the unsteady nonlinear evolution of the
wake layer and its vorticity field.

At incipient breaking conditions, an instability appears to develop at the toe of
the wave as discussed in the previous section. For a given value of q, we define a
range for the wave amplitude parameter Z0 in the following manner. The lower limit
of the range corresponds to the maximum initial amplitude of the gravity wave for
which no instability develops at the toe of the wave during the simulation, indicating
no breaking. This boundary should be directly comparable to the experimentally
determined incipient breaking condition. The upper limit of the range corresponds to
the minimum initial wave amplitude for which a strong instability originates at the toe
of the wave, indicating a definite breaking condition. These numerically determined
boundaries are plotted in figure 13 and are in good agreement with the experimental
data.
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6. Conclusions

The experiments and numerical simulations reported herein indicate that, as pro-
posed by Banner & Phillips (1974), the maximum amplitudes of steady non-breaking
water waves are reduced in the presence of a surface drift layer that flows in the direc-
tion of wave propagation, and the reduction increases with increasing drift velocity.
Our results, though, indicate that these maximum heights are much smaller than the
ones predicted by Banner & Phillips (1974) whose breaking criterion is based on the
assumption of zero fluid velocity at the wave crest in the frame of reference moving
with the crest. For example, for the highest surface drift velocity used herein, q = 0.27,
our incipient breaking height is about 60% of the one predicted by Banner & Phillips
(1974) and about 33% of the Stokes’ wave limiting height. Our incipient breaking
heights are independent of the wake momentum thickness over the range from θ =
0.145 cm to 0.210 cm (λ/θ = 286 to 197, where λ = U2∞/(2πg) is the wavelength from
linear theory in calm water). The numerical simulations show that breaking is associ-
ated with the formation of a bulge on the forward face of the crest of the wave and
a point of high upward curvature (called the toe) at the leading edge of this bulge.
For large enough wave steepness, it is observed that vorticity fluctuations increase
dramatically just under the surface in this region of the flow. The incipient breaking
amplitudes based on whether or not this local growth of vorticity fluctuations occurs
are in good agreement with the experimental data.

From the experimental measurements and theoretical analysis like that of Banner
& Phillips (1974), it was found that the crest fluid velocity at the incipient breaking
condition in the reference frame of the crest is 50% of the wave phase speed, U∞,
relative to the water at infinite depth. Our numerical simulations, though, indicate
that the crest fluid velocity for incipient breaking conditions varies from 0.3U∞ for
lower drift velocities to 0.5U∞ for higher velocities. The difference between these
values of the crest fluid velocity and those from the combined experimental data and
theoretical analysis mentioned above is assumed to be due to the inclusion of the
unsteady nonlinear evolution of the wake layer and its vorticity field in the numerical
calculations.

It is concluded, therefore, that the incipient wave height is lower than the one
predicted by Banner & Phillips (1974) due to the vorticity action in the toe region,
which renders the use of a zero-crest-velocity criterion impractical to characterize
incipient breaking conditions.
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